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Abstract
Previous work in supervisory attention driven exploration restricts

the robot to only exploit those actions that a human has given posi-

tive feedback to when the human is not paying attention.We extend

that work by proposing two algorithms - Best Action and Similarity

so that the robot can identify actions that are similar to those that

a human gave positive feedback to in explored state spaces, so that

the robot can choose safe actions even in unexplored state spaces

without human attention. Therefore, significantly improving the

robot’s learning efficiency.
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1 Introduction
Reinforcement Learning (RL) is a technique that allows a robot to

learn any task through trial and error methods [2]. There are many

existing methods that make the robot learn tasks faster and more

optimally. It has been proven that using humans in this learning

technique makes the robot learn faster - a technique that is called

policy shaping [3]. The robot is allowed to explore and exploit its

environment using policy shaping. However, a drawback to policy

shaping is that it needs the human to be present continuously and

give feedback which is not possible in the real world. Faulkner et al.

[5] identified this problem and proposed Attention-Modified Policy

Shaping (AMPS).

AMPS, however, restricts the robot to exploit actions that a hu-

man has given positive feedback to when the human is not paying

attention. We extend that work by testing two different algorithms

- Best Action and Similarity on AMPS to remove the limitation. Best

Action selects the best probable action in an unexplored state space

that a robot can take based on previous feedback on explored state

spaces. Similarity uses a similarity metric to identify explored state
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spaces using the features defined for each state space and then

picking the best action. Identifying the best action from explored

state spaces will allow the robot to choose safe actions even in

unexplored state spaces without human attention. Therefore, the

robot learns faster and earns greater rewards.

2 Background
RL is a machine learning technique used to teach an agent to per-

form a task by providing positive and negative feedback, meaning

that they do not need to have any prior knowledge of the task. [7].

Interactive RL builds on RL by adding humans whose feedback can

be integrated into the original RL algorithm using policy shaping

which directly influences the policy that the robot uses to learn its

task [6].

Both proposed algorithms are developed using policy shaping

and the AMPS algorithm. As previously stated, policy shaping

is a technique that incorporates human feedback directly in its

reinforcement learning algorithm [3]. Faulkner et al. [5] use Pol-

icy Shaping along with results from human-robot integration and

curiosity-driven learning to develop the AMPS algorithm. Prior

work in Human-Robot Interaction (HRI) does consider human at-

tention to modify the robot’s behavior but it does not directly

change the learning style of the robot based on the human’s atten-

tion [9, 13]. In [11], the authors develop a technique that allows the

robot to adapt its behavior based on its perception of the human’s

attention.

Curiosity-driven learning allows the robot to explore its environ-

ment based on maximizing learning and information-potential, not

just maximizing rewards [1, 4, 10] whichmeans the robot givesmore

emphasis on exploring unknown states and gathering information,

than merely exploiting known states for higher rewards. Previous

work in curiosity-driven learning used combined curiosity-driven

learning with human teachers by allowing the robot to choose be-

tween exploring and following human advice, but it too assumes

that the human is paying attention the entire time [10].

Researchers [8] have also modeled a human’s feedback that

reduces its need for attention the more it becomes confident of its

model of the teacher. This allows the humans to take more breaks

from teaching the robot. However, our work not only allows the

humans to take breaks, but also allows the robot to learn faster by

identifying actions that it can safely perform in new, unexplored

states without human attention.

3 Algorithm
In this section, we explain the different baseline algorithms used to

create Best Action and Similarity - Reinforcement Learning, Policy

Shaping, Attention Modified Policy Shaping. The two proposed
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algorithms, Best Action and Similarity, can identify best actions in

unexplored state spaces. Best Action helps the robot to identify the

overall best action, based on prior human feedback, to take when it

is in a new state. Similarity helps the robot identify states similar

to the new state and then pick the best overall action using the

feedback given in the similar states.

3.1 Reinforcement Learning
The RL algorithm is constructed as an MDP and uses Q-Learning

that learns Q-values for each state-action pair to solve the MDP.

An MDP is defined by (𝑆,𝐴,𝑇 , 𝑅,𝛾) where 𝑆 is a set of states, 𝐴 is a

set of actions, 𝑇 is a transition probability function 𝑆 ×𝐴 → 𝑃𝑟 [𝑆],
𝑅 is a reward function 𝑆 ×𝐴 → R, and 𝛾 is a discount factor where

0 ≤ 𝛾 ≤ 1. RL methods select a policy 𝜋 : 𝑆 ×𝐴 → R that can get

the maximum possible reward in the environment. Q values𝑄 (𝑠, 𝑎)
are used to calculate future expected reward for action 𝑎𝜖𝐴 and

state 𝑠𝜖𝑆 . The Q-Learning algorithm uses Boltzmann exploration

[12], for which the probability of selecting each action is

𝑃𝑟𝑞 (𝑎) =
𝑒𝑄 (𝑠,𝑎)/𝜏

Σ𝑎′𝑒𝑄 (𝑠,𝑎′ )/𝜏 (1)

where 𝜏 is the exploration constant set to 0.5 which decreases by

1% each learning episode. The Q-Learning parameters 𝛼 (learning

rate) is set to 0.1 and 𝛾 (discount factor) is set to 0.9 to maximize

the performance of policy shaping.

3.2 Policy Shaping
We add Policy Shaping with Q Learning to incorporate human

feedback. Policy Shaping takes positive or negative binary feed-

back and changes the current policy based on the feedback. To

account for inconsistent feedback from the human teachers, there

is a parameter 𝐶 that gives the probability that the human teacher

is correct. Here, we set C to 0.9 to indicate that the teacher will be

correct 90% of the time. We chose this value for C to match with

the AMPS algorithm [5]. We estimate that the probability that any

action in a given state is good by the different between the positive

and negative human feedback for that action. Below is the equation

used for this probability:

𝑃𝑟𝑐 (𝑎) =
𝐶𝛿𝑠,𝑎

𝐶𝛿𝑠,𝑎 + (1 −𝐶)𝛿𝑠,𝑎
(2)

where 𝛿𝑠,𝑎 is the difference between positive and negative feedback

received for any given state 𝑠 and action 𝑎 [6].

The final probability of taking any action in a given state as used

in [3] is

𝑃𝑟 (𝑎) =
𝑃𝑟𝑞 (𝑎)𝑃𝑟𝑐 (𝑎)

Σ𝛼𝜖𝐴𝑃𝑟𝑞 (𝛼)𝑃𝑟𝑐 (𝛼)
(3)

3.3 Attention-Modified Policy Shaping
We implement the AMPS algorithm that keeps track of the state-

action pairs the teacher has seen 𝐴𝑠𝑒𝑒𝑛 and state-action pairs the

teacher gave positive feedback for 𝐴𝑔𝑜𝑜𝑑 . When the human is pay-

ing attention, there is 0.5 probability that the robot will choose to

explore new states or exploit good states. If the lists,𝐴𝑠𝑒𝑒𝑛 or𝐴𝑔𝑜𝑜𝑑 ,

are empty, then the robot reverts to the policy shaping algorithm.

The periods of attention and inattention are predetermined into the

algorithm. However we did not implement the part— when there

is no human attention, the robot only chooses from the 𝐴𝑔𝑜𝑜𝑑 list

and instead came up with two different algorithms for the robot to

identify good actions in unexplored state spaces.

3.4 Best Action
In the Best Action algorithm, the robot chooses the action which

has received the most positive feedback across all states 𝑓 (𝑠, 𝑎),
when it is in an unexplored state as shown in Algorithm 1 when

the human is not paying attention. It goes through feedback for

each action for all the states and checks which action got positive

feedback across all states. If that action is possible to be taken in that

unexplored state space, then it increases the original probability

𝑃𝑎 , as calculated by the final policy shaping equation (3), of taking

that action by 50%.

Algorithm 1 Best Action Algorithm

for 𝑓 (𝑠, 𝑎) in possible actions do
if 𝑓 (𝑠, 𝑎) > 0 then

return 𝑃𝑎 ∗ 0.5
end if

end for

3.5 Similarity
The Similarity algorithm allows the robot to find similar states

using the predefined features of the states, a string of binary digits,

as shown in Algorithm 2 when the human is not paying attention.

It finds states similar to the new state using the state features and

stores it as 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 list. Then it goes through the feedback for

all those states in 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 and checks which action got positive

feedback. If that action is possible to be taken in that unexplored

state space, then it increases the original probability 𝑃𝑎 , as calcu-

lated by the final policy shaping equation (3), of taking that action

by 50%.

Algorithm 2 Similarity Algorithm

for 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 in state features do
if 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 similar to 𝑛𝑒𝑤𝑠𝑡𝑎𝑡𝑒 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 then

if 𝑓 (𝑠, 𝑎) > 0 then
return 𝑃𝑎 ∗ 0.5

end if
end if

end for

4 Simulation Experiment
We compare both algorithms with the prior approach in AMPS

for a simulated cup placement test for 7x7 grid. The robot’s goal

is to push the cup to the desired location in the most optimal, i.e.

shortest, way possible.

4.1 Experimental Design
The goal location of the cup is (6,6) with the grid indexed from 0.

The problem is formulated as an MDP with 𝑆 = (x,y) which are the

coordinates of the grid, 𝐴 = north, south, east, west as the actions
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that robot can push the cup in. For the transition function, 𝑇 , each

action moves the cup one grid square in the desired direction. The

reward is +10 for reaching the desired location and -10 for not. All

other states have a negative reward of -1 to make the robot reach

the desired location faster. The maximum reward possible is -1

which is achieved by pushing the cup to the goal in 12 steps.

To represent the human teacher, we used an oracle that gives

positive feedback of +1 when the robot moves towards the cup, and

-1 when it does the opposite.

4.2 Experiment
The robot starts from (0,0) and learns to go to the desired location

using all 3 algorithms - AMPS, Best Action, and Similarity. The

learning period is over 50 episodes with 40 steps for each episode

and is run 15 times. The robot is given attention in two batches -

for the first five episodes and then for episodes 20-25 for each run.

4.3 Results
Figure 1 shows the learning curves of all 3 algorithms. The shaded

sections indicates that the robot was given attention for those

episodes. AMPS performs comparably during and after the first

round of attention but after the second round of attention, Best

Action and Similarity both greatly outperform AMPS. The average

area under the reward curve for Best Action (Mean (𝑀) = 10.62133,

Standard Deviation (𝑆𝐷) = 8.986989) has a difference of about 9

with the average area under the reward curve for AMPS (Mean (𝑀)
= 1.584, Standard Deviation (𝑆𝐷) = 1.498756), 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0 < 0.05

(using One-way ANOVA, followed by Tukey HSD test). The average

area under the reward curve for Similarity (Mean (𝑀) = 8.04, Stan-

dard Deviation (𝑆𝐷) = 7.505112) has a difference of about 6 with

the average area under the reward curve for AMPS, 𝑝 −𝑣𝑎𝑙𝑢𝑒 = 0 <

0.05 (using Tukey HSD test). The average area under the reward

curve for Best Action has a difference of about 3 with the average

area under the reward curve than Similarity. We do not have a

significant 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for that test so we cannot say that Best Action

and Similarity have any significant mean difference.

These results suggest that both Best Action and Similarity are out-

performing AMPS during periods of inattention and allowing the

robot to identify similar states safely and learn faster.

Figure 1: Total rewards during learning for 50 episodes. All
rewards are averaged over 15 runs. The shaded background
indicates attention.

Figure 2: Set Up for the Experiment with the Kinova Gen3
arm

5 Real-World Experiment
We test the experiment on a robot to see it learn and push an

actual cup to the desired location in a 7x7 grid to verify real-world

performance.

5.1 Robot Setup
We used a robot, with a KINOVA Gen3 arm with 6 degrees of

freedom shown in Figure 2. The robot was initialized to a home

position and made to move towards the cup that was always kept

in a predetermined position and then it would grip the cup. To push

the cup, the gripper held the cup by its sides and moved it to a

predetermined distance forward, backward, left, or right. The setup

was the same for each experiment. When the robot reached the end

state in a episode, it would release the cup. If it did not reach the

end state in that episode, it would go to the next episode with the

cup still in its hand. At the end of all episodes, it would go back to

its home position. If there was any malfunction such as the robot

did not grip the cup properly or turned in a position that made

Figure 3: Results for AMPS experiment showing the final
position of the robot at the end of 3 different stages
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Figure 4: Results for Best Action experiment showing the
final position of the robot at the end of 3 different stages

it stuck, the robot had to be shut down and the experiment was

restarted.

5.2 Experiment Results
The robot was run for each experiment using the oracle as human

feedback.

AMPS algorithm:
Figure 3 shows the performance of the robot at the end of episodes

7, 22, and 47. These episodes show the robot’s performance after the

first round of attention, during the second round of attention, and

after the second round of attention respectively. We can see that the

last position of the robot at the end of the respective episodes. The

robot was only able to reach the desired goal at the end of episode

22 when it had human attention but not in episode 7 or episode

47. It shows that the robot did not learn the task by the end of the

experiment.

Best Action algorithm:
Figure 4 shows the performance of the robot at the end of episodes

7, 22, and 47. These episodes show the robot’s performance after the

first round of attention, during the second round of attention, and

after the second round of attention respectively. We can see that

the last position of the robot at the end of the respective episodes.

The robot was able to reach the desired goal at the end of both

episode 22 and episode 47 but not episode 7. It shows that the robot

learned the task by the end of the experiment.

Similarity algorithm:
Figure 5 shows the performance of the robot at the end of episodes

7, 22, and 47. These episodes show the robot’s performance after the

first round of attention, during the second round of attention, and

after the second round of attention respectively. We can see that

the last position of the robot at the end of the respective episodes.

The robot was able to reach the desired goal at the end of both

episode 22 and episode 47 but not episode 7. It again shows that

the robot learned the task by the end of the experiment.

Figure 5: Results for Similarity experiment showing the final
position of the robot at the end of 3 different stages

We observe that after 47 episodes, the robot was not able to learn

the task using AMPS, but was able to learn the task using both Best

Action and Similarity.

6 Discussion
The results show that the average areas under both the Best Action

and Similarity algorithm curves are consistently higher than the

AMPS algorithm, especially after the second round of attention.

Therefore, these results suggest that the robot performs better

without attention with the proposed algorithms than the AMPS

algorithm.

However, there remains additional testing needed to verify the

performance of these algorithms - starting with using human par-

ticipants to test the algorithms. We expect that the algorithms will

outperform the AMPS algorithm with human participants because

of the results from the simulation experiments but it needs to be

tested. Additionally, the algorithms were only tested on one task.

There should be various tasks tested and the scope of the grid

should be increased as well. Moreover, the experiments were run

only 15 times, there should also be more runs to have a better aver-

age reward curve. The proposed algorithms use a greedy approach

when it comes to selecting the action but should be modified to

choose the action with the highest positive feedback. Furthermore,

the state features are defined by a string of binary digits, changing

that to the different positions of the robot in different states will

make it easier to do more complicated tasks.

7 Conclusion
The study shows that using the proposed algorithms the robot can

safely identify actions similar to the ones it received positive feed-

back for our task. This study introduces how humans can multitask

while teaching robots - thus, giving them breaks and allowing the

robot to learn faster because it can quickly identify similar states.

The results from the two proposed algorithms show that the robot

improves its learning efficiency by identifying similar actions for

new states and also outperforms AMPS. These results suggest that
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robots could possibly learn to lightly explore new states without

human attention in order to learn faster, for certain tasks.
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